Japan—a call for research papers

Japan achieved universal health insurance coverage in 1961 and now has the longest life expectancy in the world.1 Japan’s strengths are, however, now becoming its weaknesses. Universal coverage is not the end but the beginning of new challenges—a rapidly ageing population, escalating health-care expenditures, and sustainability of universal coverage—that all countries will have to face in the future.2 How can Japan reinvigorate its health system to be more sustainable and equitable?

On the occasion of the 50th anniversary of Japan’s universal coverage, The Lancet is producing a special Series on Japan’s health and health system in September, 2011. This Series is the first country Series from a developed nation, and aims to stimulate scientific debate around the issue of health-systems reform while using experiences in Japan to provide national, regional, and global lessons.

We seek submissions of original research from Japan or from research teams working on Japan, to publish in the Series. We are particularly interested in research that analyses key questions of health status, health policy, and health systems, both within Japan and within the Asia–Pacific region. The deadline for submissions is April 15, 2011, via The Lancet’s EES online submission system. Please state in your covering letter that the submission is in response to this call for papers.

Kenji Shibuya, Lincoln C Chen, Keizo Takemi, William Summerskill
University of Tokyo, Tokyo, Japan (KS); China Medical Board, Cambridge, MA, USA (LCC); Japan Centre for International Exchange, Tokyo, Japan (KT); and The Lancet, London, UK (WS)


To submit a paper go to http://ees.elsevier.com/thelancet/

---

Public health insecticide development: a status of hiatus

For more than 30 years, no new classes of insecticide have been introduced for wide-scale public health use. Resistance to the pyrethroids, the last class introduced (and the only class approved for use on insecticide-treated bednets [ITNs]), is seriously compromising the effectiveness of malaria-control interventions.1 With no alternative compound in the wings, researchers have been left searching for ways to prolong the operational lifespan of pyrethroids.

In insecticide development, the public health market has traditionally played second fiddle to the far more profitable agriculture market, making do with hand-me-downs originally designed to agricultural specifications. Since the 1980s, in line with agricultural demand, insecticide development has moved away from persistence and low contact toxicity—arguably the two most important qualities for a public health insecticide—causing the pipeline of insecticides suitable for public health to dry up.

How was such a longstanding impasse in production of public health insecticides allowed? Resistance to DDT was one of the main reasons for abandonment of the Global Malaria Eradication Program in 1969. DDT and pyrethroids have a very similar mode of insecticidal action, which means mechanisms that confer resistance to one will probably confer resistance to the other. Albeit with the wisdom of hindsight, resistance to pyrethroids, and the endangerment of all the eggs in the proverbial basket, was highly likely, if not inevitable.

In 2005, in a bid to rectify this market failure, the Innovative Vector Control Consortium was set up with funding from the Bill & Melinda Gates Foundation. It was charged with re-engaging agrochemical companies and developing a portfolio of new chemicals and technologies for public health use. 5 years on, encouraging progress has been made—five new active ingredient projects are at various stages of development.2 However, in the search for a non-pyrethroid insecticide for ITNs, many years could pass before they deliver a valid option for malaria-control programmes.

Dara Mohammadi
The Lancet, London NW1 7BY, UK